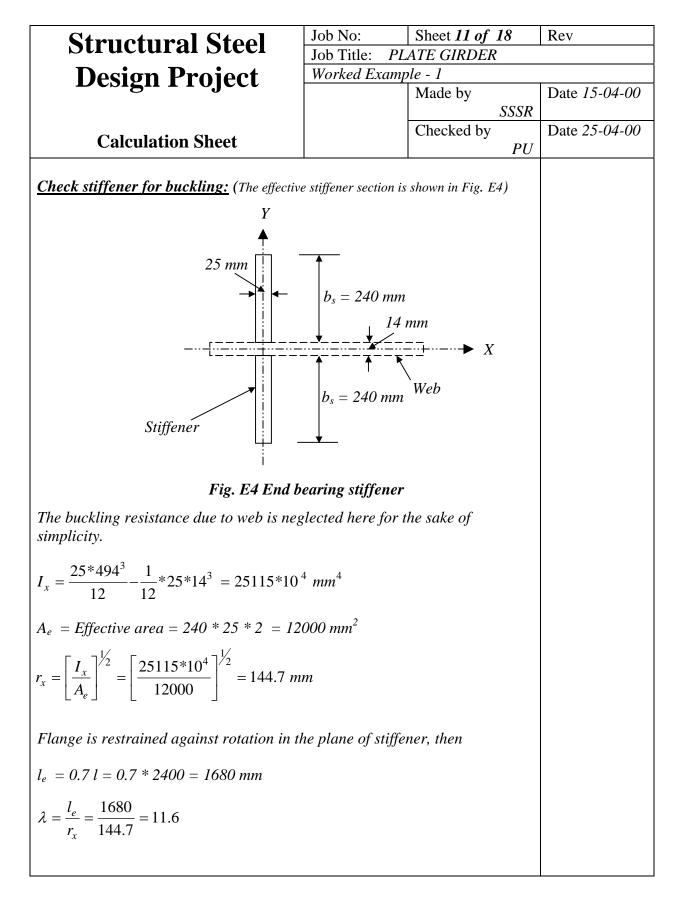


Ctress of the	nal Staal	Job No	:	Sheet 2 of 18		Rev
SIFUCIU	ral Steel			ATE GIRDER		
Design	Project	niect Worked Example - 1				
	110jeee			Made by		Date 15-04-00
					SSSR	D
Calculat	ion Sheet			Checked by	PU	Date 25-04-00
Factored Loads:						
$w' = w_d * \gamma_{fd} +$	$+ w_{\lambda} * \gamma_{f\lambda} = 20 * 1.35$	5 + 35 *	1.5	= 79.5 kN/m	!	
$W'_1 = W_{1d} * \gamma_{fd} +$	$+ W_{1\lambda} * \gamma_{f\lambda} = 20$	00 * 1.35	+ 400	* 1.5 = 87	0 kN	
$W'_2 = W_{2d} * \gamma_{fd} +$	$-W_{2\lambda}*\gamma_{f\lambda}=200*1.3$	85 + 400	* 1.5	$= 870 \ kN$		
2.0 BENDING	MOMENT AND SHI		DCE			
2.0 DENDING	MUMENT AND SHI	LAK FUI				
	Bending moment ((kN-m)	Sk	iear force (kN)	
00	$u^{1}2^{2}$ 70 5*26*26			10		
UDL effect	$\frac{w^1\lambda^2}{8} = \frac{79.5*36*36}{8}$	= 12879		$\frac{w^1\lambda}{2} =$	1431	
	8 8			2		
	Wλ					
Concentrated load effect	$\frac{W\lambda}{4} = 870*9$	= 7830		W/ -	= 870	
ejjeci	4			VV -	- 070	
TOTAL		20700			2201	
TOTAL		20709			2301	
The design shear fo	rces and bending mor	nents are	shown	in Fig. E2.		
3.0 INITIAL SI	ZING OF PLATE G	IKDEK				
<u>Depth of the plate g</u>	virder:					
	span/depth ratio fo			•		
between 12 for short span and 20 for long span girder. Let us consider depth of the girder as 2400 mm.						
aepin oj ine giraer l	13 2700 MMA.					
$\frac{\lambda}{\lambda} = \frac{36000}{2400} = 15.0$						
$\frac{d}{d} = \frac{15.0}{2400}$	$\frac{1}{d} = \frac{1}{2400} = 15.0$					
Depth of 2400 mm is acceptable.						
Depin 0j 2400 mm i	ω αυτεριασιε.					
L						l

Structural Steel		Sheet <i>4 of 18</i>	Rev
	Job Title: PL Worked Examp	ATE GIRDER	
Design Project		Made by	Date 15-04-00
		SSSR	
Calculation Sheet		Checked by PU	Date 25-04-00
<u>Flange:</u>			
$p_y = 250/1.15 = 217.4 \text{ N/mm}^2$			
Single flange area,			
$A_f = \frac{M_{\text{max}}}{d p_y} = \frac{20709 \times 10^6}{2400 \times 217.4} = 39690.7 \text{ m}$	nm ²		
By thumb rule, the flange width is assum section. Try 720 X 60 mm, giving an are		he depth of the	
<u>Web:</u>			
Minimum web thickness for plate girder in buildings usually varies between 10 mm to 20 mm. Here, thickness is assumed as 14 mm.			
Hence, web size is 2400 X 14 mm			
4.0 SECTION CLASSIFICATION			
$\frac{Flange:}{\varepsilon} = \left\{ \frac{250}{f_y} \right\}^{\frac{1}{2}} = \left\{ \frac{250}{250} \right\}^{\frac{1}{2}} = 1.0$			
$b = \frac{B-t}{2} = \frac{720 - 14}{2} = 353$			
$\frac{b}{T} = \frac{353}{60} = 5.9 < 7.9\varepsilon$			
Hence, Flange is PLASTIC SECTION.			

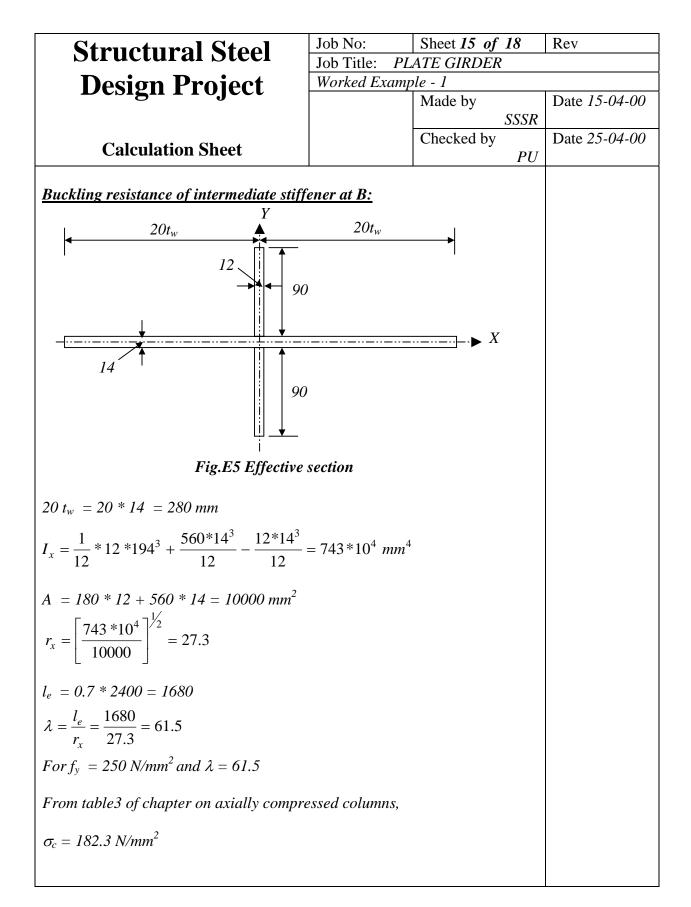

Structural Steel	Job No:	Sheet 7 of 18	Rev	
		PLATE GIRDER		
Design Project	Worked Exa	*		
0 0		Made by SSSI	R Date 15-04-00	
Calculation Sheet		Checked by	Date 25-04-00	
Calculation of critical shear strength, a	1 <u>cr:</u>			
Elastic critical stress, q_e (when $a/d > 1$)	= [1.0 + 0.75/	$((a/d)^2][1000/(d/t)]^2$		
	= [1 + 0.75/(1.	25) ²][1000/(171.4)] ²		
	$= 50.4 \text{ N/mm}^2$			
Slenderness parameter, λ_w	$= [0.6(f_{yw})]$	$(\gamma_m)/q_e]^{1/2}$		
	= [0.6(25	$= [0.6(250/1.15)/50.4]^{1/2}$		
	= 1.61 >	1.25		
Hence, Critical shear strength $(q_{cr} = q_e)$	$= 50.4 \ N/mm^2$			
$f_{v} = \frac{F_{VA}}{dt} = \frac{2301*10^{3}}{2400*14} = 68.5 \ N \ / \ mm^{2}$				
Since, $f_v > q_{cr}$ (68.5 > 50.4)				
Panel AB is designed using tension fiel	ld action.			
Calculation of basic shear strength, q _b :	<u>.</u>			
$\phi_t = \frac{1.5q_{cr}}{\sqrt{1 + \left(\frac{a}{d}\right)^2}} = \frac{1.5*50.4}{\sqrt{1 + (1.25)^2}} = 47.2$				
$y_b = (p_{yw}^2 - 3q_{cr}^2 + \phi_t^2)^{1/2} - \phi_t = (217.4^2)^{1/2}$	1			
$q_{b} = q_{cr} + \frac{y_{b}}{2\left[\frac{a}{d} + \sqrt{1 + \left(\frac{a}{d}\right)^{2}}\right]} = 50.4 + \frac{1}{2}$	$\frac{157.4}{2\left[1.25 + \sqrt{1 + (1 + (1 + \sqrt{1 + (1 + \sqrt{1 + (1 + \sqrt{1 + (1 + \sqrt{1 + \sqrt{1 + (1 + \sqrt{1 + \sqrt{1 + (1 + \sqrt{1 + 1} + \sqrt{1 + 1} + \sqrt{1 + 1 + 1} + 1} } } } } } } } } } } } } $	$(.25)^2$ = 78.0 N/mm ²	2	

Version II

	Job No:	Sheet 8 of 18	Rev
Structural Steel		ATE GIRDER	100
Design Project	Worked Examp	ole - 1	
Design i roject		Made by SSSR	Date 15-04-00
Calculation Sheet		Checked by PU	Date 25-04-00
Since, $q_b > f_v$ (78)	.0 > 68.5)		
Panel AB is safe against shear buckling.			
<u>Checks for the web panel:</u>			
End panel AB should also be checked flanges of the girder) capable of resisting due to anchor forces. (In the following calculations boundary s	g a shear force R	P_{tf} and a moment M_{tf}	
Check for shear capacity of the end pan	<u>el:</u>		
	$H_{q} = 0.75 dt p_{y} \left[1 - \frac{q_{cr}}{0.6 p_{y}} \right]^{1/2} \left[\frac{f_{v} - q_{cr}}{q_{b} - q_{cr}} \right]$		
$q_{cr} = 50.4 N / mm^2$			
$H_q = 0.75 * 2400 * 14 * 217.4 \left[1 - 50.00000000000000000000000000000000000$	$\left[\frac{.4}{0/1.15}\right]^{\frac{1}{2}} \left[\frac{68.5}{78}\right]^{\frac{1}{2}}$	$\left[\frac{-50.4}{-50.4} \right] = 2814 \ kN.$	
$R_{tf} = \frac{H_q}{2} = \frac{2814}{2} = 1407 kN$			
$A_v = t . a = 14 * 3000 = 42000 \ mm^2$			
$P_{v} = 0.6 p_{yw} A_{v} = 0.6 * (250/1.15) * 4200$	00/1000 = 5478 k	zΝ	
Since, $R_{tf} < P_{v}$, the end panel can carry the	he shear force.		

Structural Steel	Job No:	Sheet 9 of 18	Rev
		ATE GIRDER	
Design Project	Worked Exam		D + 15 04 00
		Made by SSSR	Date 15-04-00
		Checked by	Date 25-04-00
Calculation Sheet		PU	
Check for moment capacity of end panel	LAB:		
$M_{tf} = \frac{H_q d}{10} = \frac{2814 * 2400}{10} * 10^{-3} = 675$.4 kN – m		
$y = \frac{a}{2} = \frac{3000}{2} = 1500$			
$I = \frac{1}{12}ta^3 = \frac{1}{12}*14*3000^3 = 3150*10^3$	$7 mm^4$		
$M_q = \frac{I}{y} p_y = \frac{3150 \times 10^7}{1500} \times (250/1.15) \times 10^7$	$0^{-6} = 4565 \ kN - 10^{-6}$	- <i>m</i>	
Since, $M_{tf} < M_q$ (675.4 < 4565)			
The end panel can carry the bending n	noment.		
7.0 DESIGN OF STIFFENERS			
Load bearing stiffener at A:			
Design should be made for compression j	force due to bea	ring and moment.	
Design force due to bearing, $F_b = 2301$ k	N		
Force(F_m) due to moment M_{tf} , is			
$F_m = \frac{M_{tf}}{a} = \frac{675.4}{3000} * 10^3 = 225 \ kN$			
$Total \ compression = F_c = F_b + F_m = 230$	1 + 225 = 2526	kN	

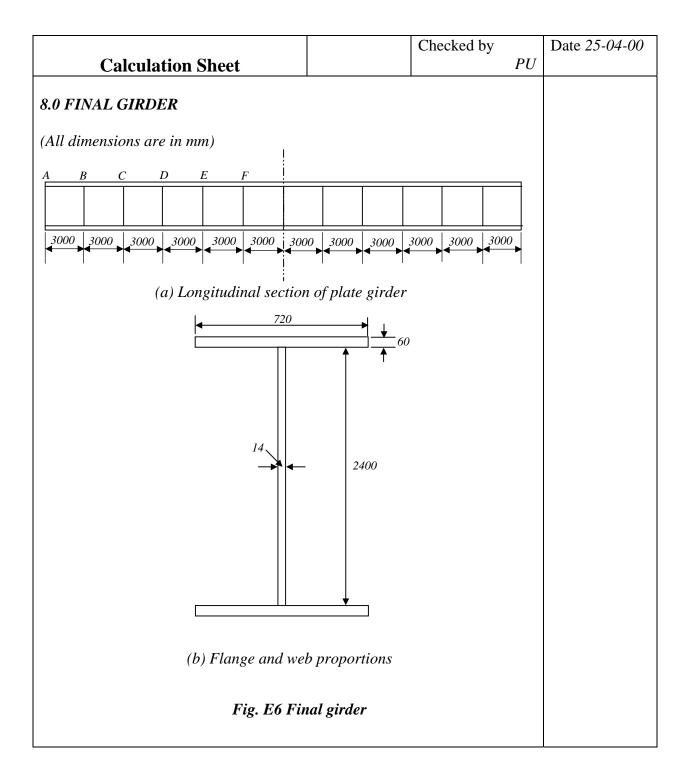
Structural Steel	Job No:	Sheet 10 of 18	Rev
	Job Title: PL Worked Examp	ATE GIRDER	
Design Project	workea Examp	Made by	Date 15-04-00
		SSSR	
Calculation Sheet		Checked by	Date 25-04-00
		PU	
Area of stiffener in contact with the flan	<u>ge, A:</u>		
Area (A) should be greater than $\frac{0.8 F_{o}}{P_{ys}}$	<u>-</u>		
$\frac{0.8F_c}{p_{ys}} = \frac{0.8*2526}{217.4} * 10^3 = 9295 \ mm^2$			
Try stiffener of 2 flats of size 240 X 25 m	n thick		
Allow 15 mm to cope for web/flange weld	ļ		
$A = 225 * 25 * 2 = 11250 \text{ mm}^2 > 9295 \text{ m}$	m^2		
:: Bearing check is ok.			
Check for outstand:			
Outstand from face of web should not be	greater than 20	<i>t_sɛ</i> .	
$\varepsilon = \left\{ \frac{250}{f_y} \right\}^{\frac{1}{2}} = \left\{ \frac{250}{250} \right\}^{\frac{1}{2}} = 1.0$			
Outstand $b_s = 240 \text{ mm} < 20 t_s \varepsilon (= 20 * 2)$	25 * 1.0 = 500)		
$b_s = 240 \ mm < 13.7 \ t_s \varepsilon \ (= 13.7 \ * 25 \ * 1.)$	0 = 342.5)		
Hence, outstand criteria is satisfied.			



Version II

	Job No:	Sheet 12 of 18	Rev
Structural Steel		ATE GIRDER	
Design Project	Worked Examp	ole - 1	
		Made by	Date 15-04-00
		SSSR	D D D D D D D D D D
Calculation Sheet		Checked by <i>PU</i>	Date 25-04-00
For $f_y = 250 \text{ N/mm}^2$ and $\lambda = 11.6$			
$\sigma_c = 250 \text{ N/mm}^2 \text{ from table (3) of chapter}$	er on axially con	pressed columns	
Buckling resistance of stiffener is			
$P_c = \sigma_c A_e / \gamma_m = (250/1.15) * 12000 * 10$	$k^{-3} = 2609 \ kN$		
Since $F_c < P_c$ (2526 < 2609), stiffener pr	rovided is safe a	gainst buckling.	
Check stiffener A as a bearing stiffener:			
Local capacity of the web:			
Assume, stiff bearing length $b_1 = 0$			
$n_2 = 2.5 * 60 * 2 = 300$ BS S	5950: Part – 1, C	Clause 4.5.3	
$P_{crip} = (b_1 + n_2) t p_{yw}$			
= (0 + 300) * 14 * (250/1.15) * 10	$0^{-3} = 913 \ kN$		
Bearing stiffener is designed for F_A			
$F_A = F_c - P_{crip} = 2526 - 913 = 1613 \text{ kN}$			
Bearing capacity of stiffener alone			
$P_A = p_{ys} * A = (250/1.15) * 12000/1000$	= 2609 kN		
Since, $F_A < P_A$ (1613 < 26)	09)		
The designed stiffener is OK in bearing.			
<u>Stiffener A</u> – Adopt 2 flats 240 mm X 25 f	mm thick		

Structure Steel	Job No:	Sheet 13 of 18	Rev
Structural Steel	Job Title: P	PLATE GIRDER	
Design Project	Worked Exam	nple - 1	
Design i Tojeet		Made by	Date 15-04-00
		SSSR	
Calculation Sheet		Checked by <i>PU</i>	Date 25-04-00
Design of intermediate stiffener at B:			
Stiffener at B is the most critical intermed chosen for the design.	liate stiffener, i	hence it will be	
<u>Minimum Stiffness:</u>			
$I_s \ge 0.75 dt^3$ for $a \ge d\sqrt{2}$			
$I_s \ge \frac{0.75 dt^3}{a^3} for \ a < d\sqrt{2}$			
$d\sqrt{2} = \sqrt{2} * 2400 = 3394 \ mm$			
$\therefore a < d\sqrt{2} \qquad (3000 < 3394)$			
Conservatively' t' is taken as actual web t	thickness and n	ninimum' a' is used.	
$\frac{1.5d^3t^3}{a^2} = \frac{1.5*2400^3*14^3}{3000^2} = 632*10^4 t^3$	mm^4		
Try intermediate stiffener of 2 flats 90 m	n X 12 mm		
$(I_s)_{\Pr ovided} = \frac{12*194^3}{12} - \frac{12*14^3}{12} = 730*100$	$10^4 mm^4$		
The section provided satisfies the minin	num required s	tiffness.	


Structural Staal	Job No:	Sheet 14 of 18	Rev
Structural Steel		ATE GIRDER	
Design Project	Worked Examp		
		Made by SSSR	Date 15-04-00
Calculation Sheet		Checked by PU	Date 25-04-00
<u>Check for outstand:</u>			
<i>Outstand of the stiffener</i> $\leq 13.7 t_s \varepsilon$			
$13.7 t_s \varepsilon = 13.7 * 14 * 1.0 = 192 mm$			
$Outstand = 90 mm \tag{90}$	< 192)		
Hence, outstand criteria is satisfied.			
Buckling check:			
Stiffener force, $F_q = V - V_s$			
where, $V = Total shear force$ $V_s = V_{cr} of the web.$			
Elastic critical stress, $q_e =$	50.4 N/mm ²		
$V_{cr} = q_{cr} d t = 50.4 * 2400 * 14 * 10^{-3} =$	1693 kN		
Shear force at B, $V_B = 2301 - [(2301 - 15)]$	585.5)*(3000/90	00)] = 2062.5 kN	
Stiffener force, $F_q = [2062.5 - 1693] = 3$	69.5 kN		

Structural Steel	Job No:	Sheet 16 of 18	Rev	
	-	Job Title: <i>PLATE GIRDER</i> <i>Worked Example - 1</i>		
Design Project		Made by SSSR	Date 15-04-00	
Calculation Sheet		Checked by PU	Date 25-04-00	
Buckling resistance = $(182.3/1.15) * 100$	$000 * 10^{-3} = 158.$	5 kN		
F_q < Buckling resistance. (369.5 < 1585))			
Hence, intermediate stiffener is adequate	2			
Intermediate stiffener at B - Adopt 2 flat	ts 90 mm X 12 m	m		
Intermediate Stiffener at D (Stiffener st	ubjected to exter	rnal load):		
Try intermediate stiffener 2 flats 90 mm	X 12 mm thick			
It satisfies the minimum stiffness requir	ement as in cas	e of stiffener at B.		
Buckling check:				
$\frac{F_q - F_x}{P_q} + \frac{F_x}{P_x} + \frac{M_s}{M_{ys}} \le l$				
$F_q = V - V_s \qquad \qquad V = 1585.5 \ kN$				
$V_s = V_{cr} = q_{cr} d t = 50.4 * 2400 * 14 * 10$	$r^3 = 1693 \ kN$			
F_q is negative and so we can take $F_q - F_q$	x = 0			
$M_s = 0$				
$F_x = 870 \ kN$				

Structural Steel	Job No:	Sheet 17 of 18	Rev
Structur ar Steel	Job Title: PL	ATE GIRDER	
Design Project	Worked Example - 1		
Design i rojeet		Made by	Date 15-04-00
		SSSR	
		Checked by	Date 25-04-00
Calculation Sheet		PU	

(Calculation is similar to stiffener at h	B)	
Buckling resistance, $P_x = (182.3/1.15)$	$) * 10000 * 10^{-3} = 1585 \ kN$	
$F_x / P_x = 870/1585 = 0.55 < 1.0$		
Hence, stiffener at D is OK against bu	ckling	
<u>Stiffener at D</u> - Adopt flats 90 mm X 1	2 mm thick	
Web check between stiffeners:		
$f_{ed} \leq p_{ed}$		
$f_{ed} = w^{1}/t = 79.5/14 = 5.7 N/mm^{2}$		
when compression flange is restrained	l against rotation relative to the web	
$p_{ed} = \left[2.75 + \frac{2}{\left(\frac{a}{d}\right)^2}\right] \frac{E}{\left(\frac{d}{t}\right)^2} = \left[2.75\right]$	$5 + \frac{2}{\left(\frac{3000}{2400}\right)^2} \left[\frac{200000}{\left(\frac{2400}{14}\right)^2} \right]$	
$=\frac{3.79*20000}{26406}=27.4 \ N/mm^2$		
Since, fBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	
Structural Steel	Job No: Sheet 18 of 18	Rev
	Job Title: <i>PLATE GIRDER</i>	
Design Project	Worked Example - 1	

