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1.0 INTRODUCTION 
 
Beams are structural members frequently used to carry loads that are transverse to their 
longitudinal axis.  They transfer loads primarily by bending and shear.  In a rectangular 
building frame, beams that span between adjacent columns are called ‘main or primary 
beams/girders’. Beams, which are used to transmit the floor loading to the main beams 
between columns, are called ‘secondary beams/joists’.  As far as the structural steel 
framing in buildings is concerned, it is sufficient to consider only the bending effects for 
beams, as torsion is not generally predominant.  For a beam (loaded predominantly by 
flexure) two essential requirements must be met to develop its full moment capacity: 
 

1.  The elements of the beam (i.e. flange and web) should not buckle locally and 
2.  The beam as a whole should not buckle laterally. 
 

To ensure that the first condition is met, the cross sections of the flange and the web 
chosen must be “plastic” or “compact”. (These definitions are explained in the chapter on 
‘Local buckling’ and also in later part of this chapter).  If the beam is required to have 
significant ductility, plastic sections must invariably be used.  To avoid the lateral 
buckling referred to under the second condition, restraints are provided to the beam in the 
plane of the compression flange, and hence such beams are called “laterally restrained 
beams”.  In many steel structures, especially in buildings, beams carry floor decks on top 
of them, and these floor decks provide restraint to the compression flange.  In the absence 
of any such restraints, and in case the lateral buckling of beams is not accounted for in 
design, the designer has to provide adequate lateral supports to the compression flange.  
In this chapter we are concerned with laterally restrained beams, in other words beams 
which have adequate lateral support to the compression flange. Beams, which buckle 
laterally, are covered in the next chapter. 
 

2.0 BEHAVIOUR OF STEEL BEAMS 
 
Laterally stable steel beams can fail only by (a) flexure (b) shear or (c) bearing, assuming 
that local buckling of slender components does not occur.  These three conditions are the 
criteria for Limit State of collapse for steel beams.  Steel beams would also become 
unserviceable due to excessive deflection and this is classified as a limit state of 
serviceability. In the following sections, we review the fundamentals of these limit states. 
 
2.1 Flexural behaviour of steel beams 
 
It is important to recognise that only plastic sections can be used in “plastic design of 
frames”, where moment redistribution is required throughout the frame.  “Plastic 
analysis” of the cross section is confined to the assessment of the behaviour of the cross 
section at the instant of collapse.  These two terms are not to be confused for each other. 
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If a flexural member is progressively loaded, it deflects and the curvature of such bending 
varies along its length.  Initially the beam is elastic throughout its length.  Let us consider 
a small portion of the beam at a point A as shown in Fig.1 (a) where the curvature is ρ .  
If we consider a small segment of the beam at A [Fig.1 (b)], then the variation of the 
strain across the depth of the member could be found out geometrically as 

ρ
ε z
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M

Deflected shape 

A 
dx 

maxε

z 

ε

h 

c 

N A 

dx 

φ

M

Curvature ρ =1/φ 

 (a) (b) 
 

Fig.1 Curvature of bending  
 
From Eq.1, the strain at any fibre is proportional to its distance ‘z’ from the neutral axis.  
This is obtained from the assumption that plane sections which are normal to the 
longitudinal axis before bending, remains plane and normal even after bending.  For each  
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 Fig.2 Idealised elasto- plastic stress- strain curve for steel 
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strain ‘ε ’ one can read off the corresponding stress ‘f’ from the idealised stress-strain 
curve for steel shown in Fig. 2. (The idealised stress strain curve neglects the strain-
hardening portion for all practical purposes).  We choose four points 1, 2, 3, 4 on the 
stress-strain curve (Fig. 2) for further discussion and see how these four points are used 
when a simply supported beam is subjected to a mid point load. 
 
2.2 Elastic flexural behaviour 
 

Consider the point (1) in Fig.2 in which the strain 1max εε =  which is less than the yield 
strain yε . At this stage, as seen from Figures 2 and 3, the stress is directly proportional to 
strain. Hence from elementary Strength of Materials, the corresponding moment of 
resistance (Mc ) is given by 
 

c
IfM 1

c =           (2) 

 f1<fy f2=fyε1<εy ε2=εy
 

1 2

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Strain and stress distributions in the elastic range  
 
 
where ‘f1’ is the extreme fibre stress, ‘I’ is the moment of inertia and ‘c’ is the extreme 
fibre distance from the neutral axis.  The term Ze = I/c is the elastic section modulus 
which is a geometric property of the section.  Hence Eq.2 can be rewritten in terms of 
elastic section modulus as 
 

ec ZfM 1=           (3) 
 
2.3 Yield and plastic moment capacities 
 
Now let us consider the point (2) in Fig. 2.  The extreme fibre strain equals yield strain 
i.e. y2max εεε ==  and also the stress f2 = fy. Where, fy is the yield stress. Up to this stage, 
as shown in Fig. 3, the stress and strain are proportional to each other since the extreme 
fibre of the beam is stressed within the elastic range. The corresponding moment, (My), is 
just sufficient to cause yield in the extreme fibres and is given by  
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eyy ZfM =           (4) 

 

Where My is called the “yield moment”, i.e. the moment which just causes the extreme 
fibres to yield.  It is evident from Fig. 5(b) that once the extreme fibre stresses attain yield 
stress they no longer take any additional stresses. 
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 Fig. 4 Strain and stress distributions in plastic range 
 
When the load and hence the moment is further increased, the outermost fibre strain εmax 
near mid span of the beam (i.e. point of maximum bending moment) would attain a value 
say, y3 εε >  and this is identified as point (3) in Fig. 2.  At this stage the strain is in the 
plastic stage, but extreme fibre stress still equals yield stress fy. We also note that the 
stresses have been redistributed to the inner fibres towards the neutral axis and these 
fibres gradually attain a stress equal to fy. This is shown in Fig.4. The remaining portion 
of the beam in the vicinity of the neutral axis is still elastic.  At this stage the moment 
capacity is calculated by considering both the plastic portion and the elastic core as, 
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 Fig.5 BM diagram and spread of plasticity across the thickness of the beam
 
Upon further loading, the outer fibre strain increases rapidly and attains a stage shown as 
point (4) in Fig.2.  At this stage the elastic core in the immediate vicinity of the neutral 
axis becomes negligible due to the spread of plasticity into the fibres near the neutral 
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axis.  It is seen from Fig. 5(c) that the curvature  of the beam (which was proportional 
to bending moment earlier) increases far more rapidly compared to the previous rate of 
increase, when the bending moment exceeds the yield moment value M

φ

y. When the entire 
cross section of the beam gets fully plastified, the curvature become infinity as shown in 
Fig. 5(c).  Fig.4 shows such a cross-section, which is fully plastified. This also is shown 
in Fig.5 where the two yield zones have merged at the neutral axis. When the entire beam 
cross section becomes plastic, it resists any further rotation under constant moment. At 
this stage the beam is said to have developed a ‘plastic hinge’. In view of this rotation, 
deflections become very large and the beam exhibits a kink at the plastic hinge as shown 
in Fig 7. The magnitude of the bending moment, at which a plastic hinge is formed, is 
known as the ‘plastic moment Mp‘. The moment- curvature relation of the cross section 
of the beam, at the point of maximum bending moment is shown in Fig. 6. The curvature 
increases enormously once the moment at the cross section reaches MP. The value of Mp 
could be easily determined by taking moment of the total tension and compression areas 
about the plastic neutral axis as 
 

)zz(
2
Af)zAzA(fTzCzM tcyttccytcp +=+=+=     (6) 

 
as shown in Fig.4, where Ac  = area under compressive yield stress and At = area under 
tensile yield stress. 
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Fig. 6 Moment curvature characteristics of a simply supported beam  
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Fig.7 Simply supported beam and its deflection at various stages  
 
In symmetrical sections the neutral axis coincides with the centroidal axis and this is not 
so in the case of unsymmetrical sections.  However the plastic neutral axis for any cross 
section (also called as “equal shear axis or equal area axis”) could be located using the 
condition that the tension and compression areas must be equal as 
 

tc AA =           (7) 
 
From Eq.6 it is seen that the plastic section modulus (Zp) is given by 
 

)( ttccp zAzAZ +=          (8) 
 
The value of S can be obtained as the sum of the moment of the cross sectional areas 
above and below the plastic neutral axis.  The plastic moment capacity of the beam could 
be written as 
 

pyp ZfM =           (9) 
It is easily verified that for a rectangular section the ratio of the plastic to elastic section 
modulus called the ‘shape factor‘is 1.5. For I-section the ratio varies between 1.07 to 
1.20 and for most practical cases of I-section this is taken as 1.12.  This ratio also 
represents the ratio between the plastic moments to the yield moment. For example for an 
I-beam we can write 
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where 
 
This value 1.12 is derived as follows: 
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3.0 SHEAR BEHAVIOUR OF STEEL BEAMS 
 
Let us take the case of an ‘I’ beam subjected to the maximum shear force (at the support 
of a simply supported beam).  The external shear ‘V’ varies along the longitudinal axis ‘x’ 

of the beam with bending moment as 
dx

dMV = .  While the beam is in the elastic stage, 

the internal shear stresses τ  which resist the external shear V can be written as, 
 

It
VQ

=τ                                          (11) 

where, V is the shear force at the section, I is the moment of inertia of the entire cross 
section about the neutral axis, Q is the moment about neutral axis of the area that is 
beyond the fibre at which τ is calculated and ‘t’ is the thickness of the portion at which 
τ is calculated. 
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 Fig. 8 Combined bending and shear in beams 
 
Eq.11 is plotted in Fig. 8(a), which represents shear stresses in the elastic range.  It is seen 
from Fig. 8(a) that a significant proportion of shear force is carried by the web and the 
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shear stress distribution over the web area is nearly uniform.  Hence, for the purpose of 
design, we can assume without much error that the average shear stress as 
 

ww
av dt

V
=τ                            (12) 

 
where, tw  is the thickness of the web and dw is the depth of the web.  The nominal shear 
yielding strength of webs is based on the Von Mises yield criterion, which states that for 
an un-reinforced web of a beam, whose width to thickness ratio is comparatively small  
(so that web-buckling failure is avoided), the shear strength may be taken as 
 

y
y

y f58.0
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f
==τ                    (13) 

where fy is the yield stress. 
 
Using Eqns.12 and 13, the shear capacity of rolled beams Vc can be calculated as 
 

wwyc dtf6.0V ≈                        (14) 
 
When the shear capacity of the beam is exceeded, the ‘shear failure’ occurs by excessive 
shear yielding of the gross area of the webs as shown in Fig. 9. Shear yielding is very rare 
in rolled steel beams. 
 
 
 
 
 
 
 
 
 Fig.9 Shear yielding near support 
 
 
4.0 WEB BUCKLING AND WEB CRIPPLING 
 
The application of heavy concentrated loads produces a region of high compressive 
stresses in the web either at the support or under the load.  This may cause either the web 
to buckle as shown in the Fig.10 (a) or the web to cripple as shown in Fig.10 (b).  In the 
former case the web may be considered as a strut restrained by the beam flanges.  Such 
‘idealised struts’ should be considered at the points of application of concentrated load or 
reactions at the supports as shown in Fig.11 and Fig.12. 
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(a) Web buckling (b) Web crippling 

Fig.10 Local buckling of the web 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In both the cases the load is spread out over a finite length of the web as shown in Fig.11.  
This is known as the ‘dispersion length’ and its theoretical treatment is complex.  Hence 
empirical formulae based on experiments are used.  One such assumption is that the 
dispersion length is taken as (b1 + n1) where b1 is the stiff bearing length and n1 is the 
dispersion of 45° line at the mid depth of the section as shown in Fig.12.  Hence the web 
buckling strength at the support is given by 
 

c11wb ft)nb(P +=                   (15) 
 
where ‘t’ is the web thickness and fc is the allowable compressive stress corresponding to 
the assumed “web strut”.  The effective length of the strut is taken as  where 
‘d’ is the depth of the “strut” in between the flanges.  The slenderness ratio of the 
idealised web strut could be written as 
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Fig.11 Dispersion of concentrated loads and reactions for evaluating web buckling  
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 Fig. 12 Effective width for web buckling 
 
 
Hence, the slenderness ratio of the idealised strut is taken as t/d5.2=λ .  Similarly the 
latter case of web crippling could also be calculated assuming a dispersion length of 
b1+n2, where n2 is the length obtained by dispersion through the flange, to the flange to 
web connection, at a slope of 1:2.5 to the plane of the flange (i.e. n2=1.5d) as shown in 
Fig.13.  As before, the crippling strength of the web at supports is calculated as 
 

yw21crip ft)nb(P +=                 (17) 
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where fyw is the design yield strength of the web.  At an interior point where concentrated 
load is acting, the crippling strength is given by, 
 

yw11crip ft)n2b(P +=                        (18) 
 
5.0 LIMIT STATE OF SERVICEABILITY – DEFLECTION 
 
Although excessive vibration and excessive deflection are both classified as “limit state 
of serviceability ”, the codes usually limit only the deflection.  A beam designed to have 
adequate strength may become unsuitable if it cannot support its loads without excessive 
deflection.  For example, excessive deflection in a floor not only gives a feeling of 
insecurity, but also damages the non-structural components (such as plaster) attached to 
it. Excessive deflections in industrial structures often cause misalignment of the 
supporting machinery and cause excessive vibration.  Similarly high deflections in 
purlins may cause damage to the roofing material.  Excessive deflection in the case of flat 
roof results in accumulation of water during rainstorms called “ponding”.  There are 
instances reported in the literature where ponding had caused collapse of a flat roof.  
Hence the deflection in beams are restricted by codes of practice by specifying deflection 
limitations which are usually in terms of deflection to span ratio. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

b1 n2
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 Fig. 13 Effective width of web bearing 
 
In the case of beams (usually considered as simply supported), if the total load ‘W’, is 
assumed to be uniformly distributed, then the maximum deflection ∆ is given by 
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where ‘E’,’I’ are the Young’s modulus and moment of inertia of a beam of length ‘L’.  
Since the maximum moment is M = WL/8 we may rewrite the Eq. (19) as 
 

EI
ML

48
5 2

=∆                   (20) 

 

Substituting 
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=  (where ‘f’ is the extreme fibre flexural stress) into Eq. (20)  

 
we get 
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Eq. (21) can be used with sufficient accuracy for all practical deflection calculations.  
Eq.(21) can also be rewritten in terms of L/d as 
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The above equation represents the length/depth ratio of the beam corresponding a specific 
ratio of deflection to span.  As stipulated by the codes of practice, if we restrict the 

deflection to (say ) 
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For an yield stress of fy = 250 MPa in the above relation, (L/d) ratio works out to 
approximately 19.  In other words, if a beam is chosen for design, whose (L/d) value is 
less than 19, then the deflection criteria would automatically be satisfied.  Similarly for a 
simply supported beam subjected to central concentrated load, the (L/d) ratio can be 
shown to be 24.  This (L/d) value is only a guiding parameter for satisfying the Limit 
state of serviceability and is not mandatory in design as long as check for serviceability is 
separately carried out. 
 
6.0 LIMIT STATE DESIGN OF STEEL BEAMS AS PER IS 800 (LSM VERSION) 
 
As we have outlined earlier, if the ultimate strength of the steel beams is to be mobilised, 
we must ensure that local buckling does not cause a premature failure.  Hence in limit 
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state design of steel beams, we pay attention to local buckling using what is known as 
‘section classification’. 
 
6.1 Concept of section classification 
 
The critical local buckling stress of the constituent plate element of a beam, for a given 
material and boundary conditions is ‘inversely proportional to its breadth to thickness 
ratio’.  Hence by suitably reducing the slenderness of the plate elements, its resistance to 
local buckling could be enhanced.  Once the local buckling is prevented, the beam can 
develop its full flexural moment capacity or the limit state in flexure.  Hence depending 
upon the slenderness of the constituent plate element of the beam, they are classified as 
slender, semi-compact, compact and plastic as shown in Table 1.  This section 
classification is new to the Indian structural designers who are familiar with the code of 
practice for structural steelwork in India, the IS: 800 (1984).  Since IS: 800(1984) is 
based on ‘Allowable Stress Method’, the extreme fibre stress in the beams is restricted to 
0.66fy.   In addition, the ‘I’ sections rolled in India are found to be at least semi-compact 
as shown in Fig.14, in which the section classification for Indian standard ‘I’ beams have 
been presented.  In other words the flange outstands of the ‘I’ beams rolled in India are so 
proportioned that they attain yield stress before local buckling.  Because of these two 
reasons, there was no need for section classification in the design of steel beams using IS: 
800 (1984).  However in the limit state design of steel beams, section classification 
becomes very essential as the moment capacities of each classified section takes different 
values, as we will see in the later sections. 
 
6.2 Effect of local buckling in laterally restrained “plastic” or  “ compact” beams 
 
As mentioned above, laterally restrained “plastic” beams while carrying flexural loads 
sometimes fail to attain their full moment capacity, by the local buckling of the web. The 
local buckling of slender flanges or slender webs in “semi-compact” or “slender beams”, 
is discussed in Chapter -8. 
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Fig.14 Section classification of Indian standard rolled ‘I’ beams 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Version II 
 

9 - 14

I.exe



LATERALLY RESTRAINED BEAMS 
 

6.3 Moment capacities of laterally restrained beams as per latest IS 800 
 
Depending upon the flange criterion (b / T) and web criterion (d / t), as shown in Table 1, 
laterally restrained beams could be classified as (a) slender, (b) semi-compact, (c) 
compact, and (d) plastic sections.  The flexural behaviour of such beams are presented in 
Fig.15. As shown in Fig.15, the section classified as ‘slender’ can not attain the first yield 
moment because of a premature local buckling of the web or flange. The next curve 
represents the beam classified as ‘semi-compact’ in which the extreme fibre stress in the 
beam attains yield stress but the beam fails by local buckling before further plastic re-
distribution of stress could take place towards the neutral axis of the beam. The moment 
capacity or the design moment (Md) of such beams can be obtained as 
 

e
mo

y
yd Z

f
MM

γ
==                  (24) 

Where moγ  is the partial safety factor for the material.  In the Indian context moγ is taken 
as 1.10.  
 
The curve shown as ‘compact beam’, in which the entire portion, both the compression 
and tension portion of the beam, attains yield stress.  Because of this plastic redistribution 
of stress, the member has attained its plastic moment capacity (Mp) but fails by local 
buckling before developing plastic mechanism by sufficient plastic hinge rotation.  The 
moment capacity of such a section can be calculated as 
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where Zp is the plastic section modulus of the cross section.  An upper bound value for 
this moment capacity has been prescribed in codes of practice, to ensure that plasticity 
does not occur at working loads. (This is done by limiting Zp value to 1.2 Ze) 
 
 
 
 
 
 
 
 

 
 
 

Section type Flange criterion (b/T) Web criterion (d/t) 
Slender > 16 ε > 126 ε 

Semi-compact 11 ε to 16 ε 105 ε to 126 ε 
Compact 9 ε to 11 ε 84 ε to 105 ε 
Plastic < 9 ε < 84 ε 

b = B/2 

yf
250=ε
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Table1: Sectional classification 
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Usually for I-beams the shape factor would be less than 1.2 and only for hollow sections 
the value of Zp / Ze is greater than 1.2.  The basic difference between the curves for 
’plastic’ and ‘compact’ sections lies in the amount of rotation they sustain at the plastic 
moment.  Usually plastic beams sustain larger rotation at the plastic moment to develop 
full mechanism.  The above discussion gives an idea as to how moment capacities of 
beams vary with different ranges of constituent plate elements as shown in Table 1. 
 
6.4 Combined bending and shear 
 
In ‘I’ sections, the flanges predominantly resist the moment and the webs predominantly 
resist the shear as shown in Fig.8 (a).  However, in the case of plastic redistribution of 
stress over the cross section, the web also is required to contribute to the flexural action 
as shown in Fig.8 (b)&(c).  Hence the shear capacity of the web gets reduced and this 
becomes very important especially when the web has to carry a relatively high shear and 
also a high bending moment at the same cross section as in 
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 Fig. 15 Flexural member performance using section classification 
the case of supports of continuous beams.  As larger part of the web yields in flexure, the 
maximum shear stress in the remaining web reaches the yield stress in shear.  To take 
care of this, the codes specify, that if the external shear load is greater than 0.6 times the 
shear capacity of the web, then the effect of shear should be considered in the calculation 
of plastic moment capacity of the cross section.  Hence a reduction is applied to the fully 
plastic moment capacity (Mdv) as 
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( ) ( ) Z
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2.11/2 2 <−−−=               (26) 

where  
Md = plastic design moment of the whole section disregarding high shear force effect and 

considering web buckling effects  
V  = factored applied shear force. 
Vd   =  design shear strength as governed by web yielding or web buckling  
Mfd = plastic design strength of the area of the cross section excluding the shear area, 

considering partial safety factor γm0 
 
7.0 UNSYMMETRICAL BENDING  
 
From elementary Strength of Materials, we know that each beam cross section has a pair 
of mutually perpendicular axes, known as the principal axes.  If bending occurs about any 
axis other than the principal axis, the plane of loading and plane of bending need not 
coincide.  This is referred to as unsymmetrical bending.  When the bending takes place 
about either of the principal axes, the plane of loading and plane of bending coincide.  
When loads are applied in an inclined direction (as in the case of purlins), they can be 
resolved into two components perpendicular to the principal axes, as shown in Fig.16, 
and the moment components Mx and My can be calculated.  Thereafter it is a simple 
matter of calculating the two bending stresses separately and algebraically adding them. 
 
7.1 Symmetrical sections 
 
In the elastic design, we can write the resolved components as  
 

byx pff ≤+                                           (27) 
where fx and fy are the maximum bending stresses at the cross section and pb is the 
permissible bending stress. We must be careful when dealing with sections such as angles 
for which the principal axes are not the geometric axes (i.e. x and y-axes).   
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Fig 16 Unsymmetrical bending  
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When using the plastic strength of the cross section (in the case of ‘plastic’ sections) the 
interaction between moment Mx and My will depend on the geometry of the cross section.  
As an illustration, IS:800 (2007), provides an interaction equation as 
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where Mcz , Mcy are the moment resistance of the cross section about the x and y axes. z1 
and z2 depend on the geometry of the cross section. Safe values of z1=z2=1.0 can be used 
as a first approximation. 
 
Similarly IS: 800 states that for section under bi-axial bending along with axial 
compression the following equation needs to be satisfied. 
 

0.1≤++
dy

y

dz

z

d M
M

M
M

N
N                                                                                                 (29) 

 
Now at zero axial compression the above equation will reduce to  
 

0.1≤+
dz

z

dy

y

M
M

M
M

                                                                                                             (30)        

 
Where,  
Mdy, Mdz = design strength under corresponding moment acting alone along y and z axes 

respectively (z-axis is equivalent of x-axis as stated above) 
               
7.2 Unsymmetrical sections 
 
In the previous section we described the bending of symmetrical sections, which undergo 
unsymmetrical bending due to inclined application of loads with respect to the principal 
axes.  There are instances where a vertical load parallel to the x-axis could cause 
unsymmetrical bending, such as angles and ‘Z’ sections.  As shown in Fig.17, the 
principal axes of these sections u-u and v-v, do not coincide with the orthogonal x-x and 
y-y axes. 
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 (a) Point symmetry  

Fig.17 Z-section prone to unsymmetrical bending  
 
In such cases, the same simplification as in the case of symmetrical sections can be used.  
However the points of maximum stresses, fx,max and fy,max, may not occur at the same 
point.  Hence the maximum stresses fx,max and fy,max  must be calculated at various points.  
After superposition of these two stresses, the maximum value of stress, of all the points in 
the cross section, has to be used in the design. 
 
7.3 Influence of plane of loading on the flexural behaviour of steel beams 
 
When the load is applied through the centroid, (Fig.18) in the case of the I beam it 
deflects in the direction of the load.  The channel section deflects straight down with a 
twist.  For bending to occur without the twisting of such cross sections, the load must be 
applied through the ‘shear centre’ of the cross section.  Shear Centre may be defined as a 
point through which load must pass so that twisting of the cross section does not occur 
during bending.  This is exemplified in Fig.19, in which the section undergoes bending 
without twist when load is applied through the shear centre.  If a cross section contains an 
axis of symmetry, its shear centre lies on that axis.  If the cross section is symmetric 
about two axes or it is point symmetric, then shear centre coincides with the centroid.  If 
the section has two elements joined together (e.g. angles) then the shear centre is at the 
juncture of the two elements. 
 
Many times we encounter steel sections such as crane girders, which do not have two 
axes of symmetry.  Such steel sections, which are prone to bending with twist, could be 
made to bend in a desired plane by providing physical constraints as shown in Fig.20.  
Such behaviour is called the ‘constrained bending’ 
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Fig:18 Deflection of beams loaded through the centroid  
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Fig.19 Deflection of channel beam loaded through the shear centre  
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Fig.20 Constrained bending 
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8.0 BUILT-UP BEAMS 
 
For many steel structures, beams may be provided from among the standard range of 
rolled steel sections. However, situation may arise when none of the available sections 
has sufficient moment capacity or there may be a restriction on the depth of the beam due 
to architectural considerations. Such situations may also occur when it is necessary to 
provide beam for longer spans or to support a heavy load.  Gantry girders are the best 
example of such cases and strengthening of existing beams is also another example.  One 
of the solutions to such a situation is to use a built-up section as shown in Fig.21. 
Consider for example, the cover-plated beam as shown in Fig.21 (a).  The moment of 
inertia of the built-up beam is increased compared to the individual rolled section.  
Neglecting the moment of inertia of the added plate about its own ‘x’ axis, there would be 
an increase in moment of inertia of approximately A(d/2)2 for every plate added to the 
rolled beam.  For the section shown in Fig.21 (a), the moment of inertia of the built-up 
section Ib  is written as  

2

sb 2
dA2II ⎟

⎠
⎞

⎜
⎝
⎛+≈                    (29) 

where IS is the moment of inertia of the rolled section.  It is more convenient to work in 
terms of section modulus than moment of inertia.  The approximate value of section 
modulus Zb (since d/2 is not the extreme fibre distance) for the built up section shown in 
Fig.21 (a) could be written as 
 

AdZ
2/d

)2/d(A2ZZ s
2

sb +=+≈                  (30) 

 
where ZS    is the section modulus of the rolled section.  The above expression helps in 
estimating the cover plate area required (although the exact value of Zb must be verified 
by calculation, particularly when one plate is added to the top flange).  If by design 
considerations, only one cover plate is to be added to rolled beam (to reduce fabrication 
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cost), then this plate should be fastened to the compression flange.  However, if the 
thickness of a cover plate added to only one flange exceeds about 1.5 times the thickness 
of the flange of the rolled section, then adding a cover plate to both the flanges is 
structurally more efficient.  All the outstands of the cover plate is to be checked for its 
slenderness so as to eliminate the possibility of local buckling.  Whenever one or more 
plates are added to form the built-up section usually the slenderness of individual plates 
should be considered. 
 

x
Interface shear to be 
considered here x

xx 

Plate area A

Rolled section 
Moment of inertia - Is  
Modulus of section - Zsd/2 

d/2 

(b) (a) 

Fig.21 Example of built –up beams 

The cover plate and the rolled beam should be adequately connected with welding or 
bolting, so as to satisfactorily transfer the interface shear between beam and plate.  The 
longitudinal spacing of these welds or bolts must be sufficiently close so as to avoid the 
plate in the compression flange buckling as an individual strut between the intermittent 
fasteners.  For connecting the cover plate and the rolled beam bolting or welding may be 
required.  In the case of bolting, holes in the flanges become inevitable.  These holes 
cause reduction in the flange area in the tension side.  However experimental work on 
flexure of cover plated steel beams has shown that the failure is based primarily on the 
strength of the compression flange even though there are bolt holes in the tension side.  
The presence of these holes does not seem to be serious.  Based on this reason, AISC 
(American Institute of Steel Construction) code suggests that no subtraction for holes 
need to be made for flange area, if the area of the holes is not more than 15% of the gross 
area of the flange.  However many codes of practice have adopted the conservative 
procedure of accounting for reduction in flange area due to bolt holes.  Likewise IS: 800 
(LSM version) has laid down the a criterion which requires to be taken into account for 
holes in the tension zone of a beam. As per this code, 
 
(Anf  / Agf) ≥  (fy/fu) (γm1 /γ m0 ) / 0.9                                                                                   (31) 
 
Where 
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Anf  / Agf  = ratio of net to gross area of the flange 
  fy/fu  = ratio of yield and ultimate strength of the material 
 γm1 /γ m0  = ratio of partial safety factors against ultimate to yield stress  
 

When the Anf /Agf does not satisfy the above requirement, the reduced flange area, Anf 
satisfying the above equation may be taken as the effective flange area in tension. 
 
In practice, the stresses are worked out initially disregarding the reduction in the tension 
flange area due to holes.  Actual tensile stress is obtained by multiplying the stresses 
calculated as above, by the ratio of gross to the net area (deduction made for tension only) 
of the respective flange sections.  The flange is taken as the flange area of the rolled 
section and the area of the cover plate. 
 
For the integral action of the rolled beam and the cover plate the interface shear must be 
adequately transferred.  Using Eq.11 the longitudinal shear per unit length to be resisted 
by these bolts or weld could be written as 
 

I
VQv =                     (32) 

 
where V,Q and I are defined in Eq.11.  Using staggered bolts of bolt value ‘R’ the 
staggered pitch of the bolts of the connection between plate and rolled beam could be 
calculated as 
 

)I/VQ(
Rp =                         (33) 

 
where ‘p’ is the pitch of the staggered bolts.  The bolts must be spaced not less than 2.5 
times diameter of the hole.  The maximum spacing is 32 times the thickness of the plate 
or 300 mm whichever is less.  In the case of welded cover plated beams, no weakening of 
the tension flange need be considered. 
 
8.1 Curtailment of cover plates 
 
The cover plate will be necessary in the middle portion of the beam where the bending 
moment is high.  Towards the supports, the moment capacity Mc of the rolled section 
alone would be sufficient to resist the external bending moment.  Hence in such portions, 
the flange plate may be cut off as shown in Fig. 22. 
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Fig.22 Curtailment of cover plate   
 
Theoretically, the cut off point is the section at which external bending moment is equal 
to moment capacity of rolled section.  However, in practice they are extended further, in 
order to accommodate bolts or welds and to develop the force in the plate for the bending 
moment at the point of cut off or in other words to provide anchorage length. 
 
9.0 SUMMARY 
 
In this chapter the fundamentals of the behaviour of laterally restrained beams have been 
brought out.  The limit states of steel beams are discussed. The section classification of 
beams has been introduced with respect to flexural behaviour of steel beams.  Design 
aspects of built-up beam have also been presented.  A worked example illustrates the 
concept of Limit state Design as applied to beams. 
 
10.0 FURTHER READING 
 
1. David Nethercot, “Limit State Design of Structural Steelwork”, Van Nostrand 

Reinhold, (1986). 
2. Introduction to Steelwork Design to BS:5950 Part I, The Steel Construction Institute, 

Ascot, UK (1988). 
3. Samuel H. Marcus, “Basis of Structural Steel Design”, Reston Publishing Co., 

Virginia, (1977). 
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Job No.  Ex  .1 Sheet    1  of   4   Rev. 
Job. Title:  LATERALLY RESTRAINED BEAMS 
Worked Example -1 
Made by          SAJ Date        21.03.2000 

Structural Steel 
Design Project 

 
 

Calculation Sheet 
Checked by    SS Date        26.03.2000 

 
EXAMPLE: 1 
 
Design a suitable ‘I’ beam for a simply supported span of 3 m and carrying 
a dead or permanent load of 17.78 kN/m and an imposed load of 40 kN/m. 
Assume full lateral restraint and stiff support bearing of 100 mm. 
 
 
 
 
 
 
 
 
Design load calculation
 
factored load = 17×LDγ

 
in this example the follo
 

LDγ and 
LLγ are taken 

 
γLD – partial safety facto
γLL – partial safety facto
 
Total factored load = 1.
 
Factored bending mome
 
Z—value required for fy
 

250

1010005.97
reqdZ

××
=

Zreqd  = 429.02 cm 3
 

 

 

 
γLD = 1.50 

γLL = 1.50 
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 load  factors are chosen. 

.50 and 1.50 respectively. 

 dead or permanent loads 
 live or imposed loads 

17.78 + 1.50 × 40.0 = 86.67 kN / m 

 86.67 × 32 /8  = 97.504 kN – m 

0 MPa ;  γm =1.10  
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Job No.  Ex  .1 Sheet    2  of   4   Rev. 
Job. Title:  LATERALLY RESTRAINED BEAMS 

Worked Example - 1 
Made by      SAJ Date        21.03.2000 

Structural Steel 
Design Project 

 
Calculation sheet Checked by  SS Date        26.03.2000 

Try ISMB 250  

               0.1
250
250

==ε         D = 250 mm 

                                                          B = 125 mm 

                                                           t = 6.9  mm 

                                                          T = 12.5 mm 

                                                           Izz = 5131.6 cm4

                                                           Iyy = 334.5 cm4

Section classification: 

Flange  criterion  = B/2T          = 5.0 

Web  criterion     = (D – 2T)/t = 32.61 

 Since B/2T <9.4 ε  & (D-2T)/t  < 83.9 ε  

The  section is  classified as  ‘ PLASTIC ’ 

Moment of resistance of the cross section: 

Since the section considered is   ‘PLASTIC’ 

                Md =  
m

yp fZ
γ
×

 

                  Where  Zp is the  plastic  modulus   

                 ‘Zp’ for  ISMB 250  = 459.76 cm3

                Md = 459.76 × 1000 × 250 /1.10 

                         = 104.49 kN-m > 97.504 kN-m 

Hence ISMB-250 is adequate in flexure. 
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Job No.  Ex  .1 Sheet    3  of   4   Rev. 

Job. Title:  LATERALLY RESTRAINED BEAMS 
 
Worked Example- 1 
Made by           SAJ Date            21.03.2000 

 

Structural Steel 
Design Project 

 
 

Calculation sheet 
Checked by       SS Date            26.03.2000 

Shear resistance of the cross section: 
 
This check needs to be considered more importantly in beams where the 
maximum bending moment and maximum shear force may occur at the 
same section simultaneously, such as the supports of continuous beams.  
For the present example this checking is not required.  However for 
completeness this check is presented. 
 

Shear capacity  Vc = 

m

vy Af6.0

γ
 

                       Av  =250 × 6.9 = 1725 mm2 

                       Vc   = 0.6 × 250 × 1725 /1.10  =235.3kN 
                        V  = factored max shear = 86.67 × 3 / 2 =130.0 kN 
                        V /Vc  =130/235.3 = 0.55 < 0.6 
Hence the effect of shear need not be considered in the moment capacity 
calculation. 
 
Check for Web Buckling:

The slenderness ratio of the web = LE/ry = 2.5 d/t =2.5 × 194.1/6.9 

                                                     =70.33 

The corresponding design compressive stress fc  is found to be 

                    fc     = 203 MPa  (Design stress for web as fixed ended column) 

Stiff bearing length = 100 mm 

450  dispersion length  n1   =  125.0 mm 

 Pw  =  (100 + 125.0) × 6.9 × 203.0 

                      =  315.16 kN 

                      315.16 > 126       Hence web is  safe against shear  buckling  
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Job No.  Ex  .1 

 
Sheet    4  of   4   

 
Rev. 

Job. Title:  LATERALLY RESTRAINED BEAMS
Worked Example - 1 
Made by            SAJ Date       21.03.2000 

Structural Steel 
Design Project 
 

 
Calculation sheet Checked by       SS Date       26.03.2000 

Check for web crippling at support
 

Root radius of ISMB 250    =   13 mm 

Thickness of  flange  +  root radius      =     25.5 mm 

Dispersion length  (1:2.5)   n2   =   2.5 x 25.5   =   63.75 mm 

Pcrip  =  (100+63.75) × 6.9 × 250 / 1.15 

        =    245.63 kN > 126kN 

    Hence  ISMB 250 has adequate  web  crippling  resistance  

 

Check for serviceability – Deflection: 

 Load factors for working loads  0.1and LLLD
=γγ  

design load  = 57.78 kN/m. 

Max deflection  

200531

531

65.5

4106.51315101.2384

4300078.575

LL

L
mm

<

=

=
××××

××
=δ

 

 
Hence  serviceability  is satisfied  
 
Result: -- Use   ISMB – 250. 
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